SAS to PySpark Migration | CONFIDENTIAL

SAS TO PYSPARK
MIGRATION GUIDE

Data Steps • PROC SQL • Macros • Functions • Patterns

Version 1.0 | January 2026

Table of Contents

1. Migration Overview
This guide provides patterns for converting SAS programs to PySpark in Microsoft Fabric. Understanding the fundamental differences between SAS and PySpark is essential for successful migration.
1.1 Key Differences
	Concept
	SAS
	PySpark

	Data Structure
	Dataset (row-by-row)
	DataFrame (columnar)

	Processing
	Single node
	Distributed

	Language
	DATA step, PROC
	Python, SQL

	Execution
	Eager
	Lazy

	Missing Values
	Dot (.)
	None/null

1.2 Migration Approach
1. 1. Inventory: Catalog all SAS programs
1. 2. Assess: Complexity and dependencies
1. 3. Prioritize: Critical programs first
1. 4. Convert: Apply patterns from this guide
1. 5. Test: Validate output matches
1. 6. Deploy: Move to production

2. DATA Step Conversions
2.1 Basic DATA Step
/* SAS */
DATA work.claims;
 SET raw.claims_input;
 WHERE claim_amount > 0;
 total = claim_amount + copay;
RUN;

PySpark
claims = (
 spark.table('raw.claims_input')
 .filter(col('claim_amount') > 0)
 .withColumn('total', col('claim_amount') + col('copay'))
)
2.2 Multiple SET Statements (Append)
/* SAS */
DATA combined;
 SET data1 data2 data3;
RUN;

PySpark
combined = data1.union(data2).union(data3)
2.3 MERGE (Join)
/* SAS */
DATA merged;
 MERGE claims(IN=a) members(IN=b);
 BY member_id;
 IF a AND b;
RUN;

PySpark
merged = claims.join(
 members,
 on='member_id',
 how='inner'
)

3. PROC SQL Conversions
3.1 Basic Query
/* SAS */
PROC SQL;
 CREATE TABLE summary AS
 SELECT region, SUM(amount) AS total
 FROM claims
 WHERE status = 'PAID'
 GROUP BY region;
QUIT;

PySpark SQL
summary = spark.sql('''
 SELECT region, SUM(amount) AS total
 FROM claims
 WHERE status = 'PAID'
 GROUP BY region
''')
3.2 Subqueries
/* SAS */
PROC SQL;
 SELECT * FROM claims
 WHERE member_id IN (SELECT member_id FROM vip_members);
QUIT;

PySpark
vip_ids = vip_members.select('member_id')
result = claims.join(vip_ids, 'member_id', 'semi')
3.3 Window Functions
/* SAS */
PROC SQL;
 SELECT *, ROW_NUMBER() OVER (PARTITION BY member_id
 ORDER BY service_date DESC) AS rn
 FROM claims;
QUIT;

PySpark
from pyspark.sql.window import Window
window = Window.partitionBy('member_id').orderBy(desc('service_date'))
result = claims.withColumn('rn', row_number().over(window))

4. Common Functions
4.1 String Functions
	Operation
	SAS
	PySpark

	Uppercase
	UPCASE(x)
	upper(col('x'))

	Lowercase
	LOWCASE(x)
	lower(col('x'))

	Trim
	STRIP(x)
	trim(col('x'))

	Substring
	SUBSTR(x,1,5)
	substring(col('x'),1,5)

	Concatenate
	CAT(a,b) or ||
	concat(col('a'),col('b'))

	Length
	LENGTH(x)
	length(col('x'))

4.2 Date Functions
	Operation
	SAS
	PySpark

	Today
	TODAY()
	current_date()

	Year
	YEAR(dt)
	year(col('dt'))

	Month
	MONTH(dt)
	month(col('dt'))

	Date diff
	INTCK('day',a,b)
	datediff(col('b'),col('a'))

	Add months
	INTNX('month',dt,3)
	add_months(col('dt'),3)

5. SAS Macros to Python
5.1 Simple Macro Variable
/* SAS */
%LET start_date = '2024-01-01';
WHERE service_date >= &start_date;

Python
start_date = '2024-01-01'
df = df.filter(col('service_date') >= start_date)
5.2 Macro with Parameters
/* SAS */
%MACRO filter_claims(status=, min_amt=0);
 DATA filtered;
 SET claims;
 WHERE status = "&status" AND amount >= &min_amt;
 RUN;
%MEND;
%filter_claims(status=PAID, min_amt=100);

Python
def filter_claims(df, status, min_amt=0):
 return df.filter(
 (col('status') == status) & (col('amount') >= min_amt)
)
filtered = filter_claims(claims, 'PAID', 100)
5.3 Data-Driven Macro
/* SAS - Loop through regions */
%MACRO process_regions;
 PROC SQL NOPRINT;
 SELECT DISTINCT region INTO :regions SEPARATED BY ' '
 FROM claims;
 QUIT;
 %DO i = 1 %TO &sqlobs;
 %LET reg = %SCAN(®ions, &i);
 /* process each region */
 %END;
%MEND;

Python
regions = claims.select('region').distinct().collect()
for row in regions:
 process_region(row['region'])

6. Best Practices
6.1 Conversion Guidelines
1. Convert PROC SQL first (most similar)
1. Use Spark SQL for complex queries
1. Replace macro variables with Python variables
1. Convert macros to Python functions
1. Test with sample data before full run
1. Validate row counts and totals match
6.2 Performance Tips
1. Avoid row-by-row processing (no iterators)
1. Use built-in functions over UDFs
1. Filter early in the transformation
1. Cache intermediate DataFrames if reused
1. Partition large tables appropriately
6.3 Common Pitfalls
1. SAS sorts implicitly; PySpark does not
1. Missing values handled differently
1. SAS dates are numeric; use proper types
1. BY processing requires explicit groupBy
1. RETAIN requires window functions

Appendix: Document Information
	Document Title
	SAS to PySpark Migration Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
